
Words
and
Tokens

Words

1

How many words in a sentence?

They picnicked by the pool, then

lay back on the grass and looked at

the stars.

16 words
◦ if we don’t count punctuation marks as words

18 if we count punctuation

2

How many words in an utterance?

"I do uh main- mainly business data
processing"

Disfluencies
◦ Fragments main-
◦ Filled pauses: uh and um

◦ Should we consider these to be words?

3

How many words in a sentence?

They picnicked by the pool, then

lay back on the grass and looked at

the stars.

Type: an element of the vocabulary V
◦ The number of types is the vocabulary size |V|

Instance: an instance of that type in running text.
◦ 14 types and 16 instances (if we ignore punctuation).
◦ More questions: Are They and they the same word?

4

How many words in a sentence?

I'm

Orthographically one word (in the English
writing system)

But grammatically two words:

1. the subject pronoun I

2. the verb ’m, short for am.
5

How many words in a sentence?

Not every written language uses spaces!!

Chinese, Japanese and Thai don't!

6

How to choose tokens in Chinese

Chinese words are composed of characters
called "hanzi" (汉字) (or sometimes just "zi")
Each one represents a meaning unit called a
morpheme.

Each word has on average 2.4 of them.

But deciding what counts as a word is complex
and not agreed upon.

7

How to do choose tokens in
Chinese?

姚明进入总决赛 “Yao Ming reaches the finals”
◦yáo míng jìn rù zǒng jué sài

3 words?
姚明 进入 总决赛
YaoMing reaches finals

5 words?
姚 明 进入 总 决赛
Yao Ming reaches overall finals

7 words?
姚 明 进 入 总 决 赛
Yao Ming enter enter overall decision game

Chinese Treebank

Peking University

Just use characters
8

Tokenization across languages

So in Chinese we use characters (zi) as
tokens

But that doesn't work for, e.g., Thai and
Japanese
These differences make it hard to use words as
tokens

And there's another reason why we don't
use words as tokens!

9

There are simply too many words!

Types = |V| Instances = N

Shakespeare 31 thousand 884,000

Brown Corpus 38 thousand 1 million

Switchboard conversations 20 thousand 2.4 million

COCA 2 million 440 million

Google N-grams 13+ million 1 trillion

Notice that (roughly) the bigger the corpora,
the more words we find!

10

There are simply too many words!
N = number of instances
|V | = number of types in vocabulary V
Heaps Law = Herdan's Law

Vocab size for a text goes up with the square
root of its length in words

Roughly 0.5

11

Two kinds of words

Function words

Content words

12

Tria, Loreto, Servedio, 201813

Why is too many words a problem?

No matter how big our vocabulary
There will always be words we missed!
We will always have unknown words!

14

Words and Subwords

Because of these problems:
◦ Many languages don't have orthographic words
◦ Defining words post-hoc is challenging
◦ The number of words grows without bound

NLP systems don't use words, but smaller units called
subwords

In the next lecture we'll start by introducing smaller units like
morphemes and characters

15

15

Words
and
Tokens

Words

16

Words
and
Tokens

Morphemes

17

Words have parts

Morpheme: a minimal meaning-bearing unit in a
language.

fox: one morpheme

cats: two morphemes cat and –s

Morphology: the study of morphemes

18

Morphemes in English and Chinese

Doc work-ed care-ful-ly wash-ing the

glass-es

19

Types of morphemes

root: central morpheme of the word
- supplying the main meaning

affix: adding additional meanings

worked

root work
affix -ed

glasses

root glass
affix -es

20

Types of affixes
Inflectional morphemes
◦ grammatical morphemes
◦ often syntactic role like agreement
–ed past tense on verbs
-s/-es plural on nouns

Derivational morphemes
◦ more idiosyncratic in application and meaning
◦ often change grammatical class
care (noun)

+ -full→ careful (adjective)
+ -ly→ carefully (adverb) 21

Clitics
A morpheme that acts syntactically like a word but:
◦ is reduced in form
◦ and attached to another word

English: 've in I've ('ve can't appear alone)

English: ’s in the teacher’s book

French: l’ in l’opera

Arabic: b ‘by/with’, w ‘and’.
22

Morphological Typology

Dimensions along which languages vary

Two are salient for tokenization:
1. number of morphemes per word
2. how easy it is to segment the

morphemes

23

Number of morphemes per word

Few. Cantonese, spoken in Guangdong, Guangxi, Hong Kong
keoi5 waa6 cyun4 gwok3 zeoi3 daai6 gaan1 uk1 hai6 ni1 gaan1
he say entire country most big building house is this building

“He said the biggest house in the country was this one”

Many. Koryak, Kamchatka peninsula in Russia,
t-ə-nk’e-mejŋ-ə-jetemə-nni-k
1SG.S-E-midnight-big-E-yurt.cover-E-sew-1SG.S[PFV]
“I sewed a lot of yurt covers in the middle of a night.”

24

Joseph Greenberg (1960) scale

25

How easily segmentable

Agglutinative languages like Turkish
◦ Very clean boundaries between morphemes

Fusion languages
◦ a single affix may conflate multiple morphemes,

◦ Russian -om in stolom (table-SG-INSTR- DECL1)
◦ instrumental, singular, and first declension.

◦ English –s in "She reads the article"
◦ Means both "third person" and "present tense"

These are tendencies rather than absolutes
26

Words
and
Tokens

Morphemes

27

Words
and
Tokens

Unicode

28

Unicode

a method for representing text written using
• any character (more than 150,000!)
• in any script (168 to date!)
• of the languages of the world
• Chinese, Arabic, Hindi, Cherokee, Ethiopic, Khmer, N’Ko,…
• dead ones like Sumerian cuneiform
• invented ones like Klingon
• plus emojis, currency symbols, etc.

29

ASCII: Some history for English

1 byte per character
◦ In principle 256 characters
◦ But high bit set to 0
◦ So 7 bits = 128
◦ However only 95 used
The rest were for teletypes

1960s American Standard Code for Information Exchange

30

ASCII: Some history for English

h e l l o

68 65 6C 6C 6F

31

ASCII wasn't enough!

Spanish: Señor- respondió Sancho

This sentence has non-ASCII ñ and ó

About 100,000 Chinese/CJKV characters
(Chinese, Japanese, Korean, or Vietnamese)

Devanagari script for 120 languages like
Hindi, Marathi, Nepali, Sindhi, Sanskrit, etc.

32

Code Points

Unicode assigns a unique ID, a code point,
to each of its 150,000 characters

1.1 million possible code points
◦ 0 – 0x10FFFF

Written in hex, with prefix "U+"
◦ a is U+0061 which = 0x0061

First 127 code points = ASCII
◦ For backwards compatibility

33

Some code points

A code point has no visuals; it is not a glyph!
Glyphs are stored in fonts: a or a or a or a
But all of them are U+0061, abstract "LATIN SMALL A"

34

Encodings and UTF-8

We don't stick code points directly in files

We store encodings of chars.

The most popular encoding is UTF-8

Most of the web is stored in UTF-8

35

Encodings

hello has these 5 code points:
U+0068 U+0065 U+006C U+006C U+006F

How to write in a file?

There are more than 1 million code points

So need 4 bytes (or 3 but 3 is inconvenient):
00 00 00 68 00 00 00 65 00 00 00 6C 00 00 00 6C 00 00 00 6F

But that makes files very long!
◦ Also zeros are bad (since mean "end of string" in ASCII)

36

Instead: Variable Length Encoding

UTF-8 (Unicode Transformation Format 8)
For the first 127 code points, same as ASCII
UTF-8 encoding of hello is :
◦ 68 65 6C 6C 6F

Code points ≥128 are encoded as a sequence
of 2, 3, or 4 bytes

◦ In range 128 - 255, so won’t be confused with ASCII
◦ First few bits say if its 2-byte, 3-byte, or 4-byte

37

UTF-8 Encoding

̃n, code point U+00F1, = 00000000 11110001
◦ Gets encoded with pattern 110yyyyy 10xxxxxx
◦ So is mapped to a two-byte bit sequence
◦ 11000011 10110001 = 0xC3B1.

yyy yyxxxxxx

38

UTF-8 encoding

The first 127 characters (ASCII) map to 1 byte

Most remaining characters in European, Middle
Eastern, and African scripts map to 2 bytes

Most Chinese, Japanese, and Korean characters
map to 3 bytes

Rarer CJKV characters, emojis/symbols map to
4 bytes.

39

UTF-8 encoding

Efficient: fewer bytes for common characters,

Doesn't use zero bytes (except for NULL
character U+0000),

Backwards compatible with ASCII,

Self-synchronizing,
◦ If a file is corrupted, the nearest character boundary

is always findable by moving only up to 3 bytes

40

UTF-8 and Python 3

Python 3 strings stored internally as Unicode
◦ each string a sequence of Unicode code points
◦ string functions, regex apply natively to code points.

◦ len() returns string length in code points, not bytes

Files need to be encoded/decoded when
written or read
◦ Every file is stored in some encoding
◦ No such thing as a text file without an encoding

◦ If it's not UTF-8 it's something older like ASCII or iso_8859_1

41

Words
and
Tokens

Unicode

42

Words
and
Tokens

Byte Pair Encoding

43

The NLP standard for tokenization

Instead of
• white-space / orthographic words

• Lots of languages don't have them
• The number of words grows without bound

• Unicode characters
• Too small as tokens for many purposes

• morphemes
• Very hard to define

We use the data to tell us how to tokenize.
44

Why tokenize?

Using a deterministic series of tokens means
systems can be compared equally

◦ Systems agree on the length of a string

Eliminates the problem of unknown words

45

Subword tokenization

Two most common algorithms:
◦ Byte-Pair Encoding (BPE) (Sennrich et al., 2016)
◦ Unigram language modeling tokenization (Kudo,

2018) (sometimes confusingly called
"SentencePiece" after the library it's in)

All have 2 parts:
◦ A token learner that takes a raw training corpus and

induces a vocabulary (a set of tokens).
◦ A token segmenter that takes a raw test sentence and

tokenizes it according to that vocabulary 46

Byte Pair Encoding (BPE) token learner

Repeat:
◦ Choose most frequent

neighboring pair ('A', 'B')
◦ Add a new merged symbol

('AB') to the vocabulary
◦ Replace every 'A' 'B' in the

corpus with 'AB'.

Until k merges

Vocabulary

[A, B, C, D, E]

[A, B, C, D, E, AB]

[A, B, C, D, E, AB, CAB]

Corpus
A B D C A B E C A B
AB D C AB E C AB
AB D CAB E CAB

Iteratively merge frequent neighboring tokens to create longer tokens.

47

BPE algorithm

Generally run within words

Don't merge across word boundaries
◦ First separate corpus by whitespace
◦ This gives a set of starting strings, with whitespace

attached to front of them
◦ Counts come from the corpus, but can only merge

within strings.

48

BPE token learner algorithm

49

Byte Pair Encoding (BPE) Addendum

Most subword algorithms are run inside
space-separated tokens.

So we commonly first add a special end-of-
word symbol '__' before space in training
corpus

Next, separate into letters.

50

BPE token learner
Original (very fascinating🙄) corpus:

set␣new␣new␣renew␣reset␣renew

Put space token at start of words

51

BPE token learner

Merge n e to ne (count 4 = 2 new + 2 renew)

52

BPE token learner

Merge ne w to new (count 4)

53

BPE token learner

Merge ␣ r to ␣r (count 4) and ␣r e to ␣re (count 3)

System has learned prefix re- !
54

BPE

The next merges are:

55

55

BPE encoder algorithm
Tokenize a test sentence: run each merge learned
from the training data:

◦ Greedily, in the order we learned them
◦ (test frequencies don't play a role)

First: segment each test word into characters
Then run rules: (1) merge every n e to ne, (2) merge
ne w to new, (3) ␣r, (4) ␣re etc.
Result:
◦ Recreates training set words
◦ But also learns subwords like ␣re that might appear in

new words like rearrange
56

BPE and Unicode

Run on large Unicode corpora, with vocabulary
sizes of 50,000 to 200,000

On individual bytes of UTF-8-encoded text.
◦ BPE rediscovers 2-byte and common 3-byte UTF-8

sequences
◦ Only 256 possible values of a byte, so no unknown

tokens
◦ (BPE might learn a few illegal UTF-8 sequences

across character boundaries, but these can be filtered)
57

Visualizing GPT4o tokens

Tokens: 11865, 8923, 11, 31211, 6177, 23919, 885, 220, 19427, 7633, 18887, 147065, 0

Most words are tokens, w/initial space
Clitics like ’s
◦ Are segmented off Jane
◦ But part of frequent words like she’s

Numbers segmented into chunks of 3 digits
Some of this is from preprocessing
◦ regular expressions for chunking digits, stripping clitics

Tat Dat Duong’s Tiktokenizer visualizer

58

https://tiktokenizer.vercel.app/

Tokenizing across languages

Even though BPE tokenizers are multilingual

LLM training data is still vastly dominated by
English

Most BPE tokens used for English, leaving less for
other languages
Words in other languages are often split up

59

Tokenization is better in English

A recipe sentence in two languages

Tat Dat Duong’s Tiktokenizer visualizer on GPT4o

English: 18 tokens; no words are split into multiple tokens):

Spanish: 33 tokens; 6/16 words are split

60

https://tiktokenizer.vercel.app/

Words
and
Tokens

Byte Pair Encoding

61

Words
and
Tokens

Rule-based tokenization
and
Simple Unix tools

62

Rule-based tokenization

Although subword tokenization is the norm

Sometimes we need particular tokens

Like for parsing, where the parser needs
grammatical words, or social science

63

Issues for rule-based tokenization
Mostly but not always remove punctuation:
◦ m.p.h., Ph.D., AT&T, cap’n
◦ prices ($45.55)
◦ dates (01/02/06)
◦ URLs (http://www.stanford.edu)
◦ hashtags (#nlproc)
◦ email addresses (someone@cs.colorado.edu)

Numbers are tokenized differently across
languages

◦ English 555,500.50 = French 555 500,50

Multiword expressions (MWE)?
◦ New York, rock ’n’ roll 64

Penn Treebank Tokenization Standard

65

Tokenization in NLTK
Bird, Loper and Klein (2009), Natural Language Processing with Python. O’Reilly

66

Sentence Segmentation
!, ? mostly unambiguous but period “.” is very
ambiguous

◦ Sentence boundary
◦ Abbreviations like Inc. or Dr.
◦ Numbers like .02% or 4.3

Common algorithm: Tokenize first: use rules or ML
to classify a period as either (a) part of the word or
(b) a sentence-boundary.

◦ An abbreviation dictionary can help

Sentence segmentation can then often be done by
rules based on this tokenization.

67

Space-based tokenization

A very simple way to tokenize
◦ For languages that use space characters between

words
◦ Arabic, Cyrillic, Greek, Latin, etc., based writing systems

◦ Segment off a token between instances of spaces

Unix tools for space-based tokenization
◦ The "tr" command
◦ Inspired by Ken Church's UNIX for Poets
◦ Given a text file, output the word tokens and their

frequencies 68

Simple Tokenization in UNIX
(Inspired by Ken Church’s UNIX for Poets.)
Given a text file, output the word tokens and their
frequencies
tr -sc ’A-Za-z’ ’\n’ < shakes.txt

| sort

| uniq –c

1945 A

72 AARON

19 ABBESS

5 ABBOT

... ...

25 Aaron

6 Abate

1 Abates

5 Abbess

6 Abbey

3 Abbot

.... …

Change all non-alpha to newlines

Sort in alphabetical order

Merge and count each type

69

The first step: tokenizing

tr -sc ’A-Za-z’ ’\n’ < shakes.txt | head

THE

SONNETS

by

William

Shakespeare

From

fairest

creatures

We

...

70

The second step: sorting

tr -sc ’A-Za-z’ ’\n’ < shakes.txt | sort | head

A

A

A

A

A

A

A

A

A

...

71

More counting
Merging upper and lower case
tr ‘A-Z’ ‘a-z’ < shakes.txt | tr –sc ‘A-Za-z’ ‘\n’ | sort | uniq –c

Sorting the counts
tr ‘A-Z’ ‘a-z’ < shakes.txt | tr –sc ‘A-Za-z’ ‘\n’ | sort | uniq –c | sort –n –r

23243 the

22225 i

18618 and

16339 to

15687 of

12780 a

12163 you

10839 my

10005 in

8954 d

What happened here?

72

Words
and
Tokens

Rule-based tokenization
and
Simple Unix tools

73

Words
and
Tokens

Corpora

74

Corpora

Words don't appear out of nowhere!
A text is produced by
• a specific writer(s),
• at a specific time,
• in a specific variety,
• of a specific language,
• for a specific function.

75

Corpora vary along dimensions like

Language: 7097 languages in the world

It's important to test algorithms on multiple
languages

What may work for one may not work for
another

76

Corpora vary along dimensions like

Variety, like African American English
varieties

◦ AAE Twitter posts might include forms like "iont" (I
don't)

Genre: newswire, fiction, scientific articles,
Wikipedia

Author Demographics: writer's age, gender,
ethnicity, socio-economic status

77

Code Switching

Speakers use multiple languages in the same
utterance
This is very common around the world
Especially in spoken language and related
genres like texting and social media

78

Code Switching: Spanish/English

Por primera vez veo a @username actually
being hateful! It was beautiful:)

[For the first time I get to see @username
actually being hateful! it was beautiful:)]

79

Code Switching: Hindi/English

dost tha or ra- hega ... dont wory ... but dherya
rakhe

[“he was and will remain a friend ... don’t worry ...
but have faith”]

80

Corpus datasheets

Motivation:
• Why was the corpus collected?
• By whom?
• Who funded it?

Situation: In what situation was the text written?
Collection process: If it is a subsample how was it
sampled? Was there consent? Pre-processing?

+Annotation process, language variety, demographics,
etc.

Gebru et al (2020), Bender and Friedman (2018)

81

Words
and
Tokens

Corpora

82

Words
and
Tokens

Regular Expressions

83

Regular expressions are used everywhere

◦ A formal language for specifying text
strings

◦ Part of every text processing task
◦ Often a useful pre-processing or text formatting

step, for example for BPE tokenization
◦ Also necessary for data analysis of text
◦ A widely used tool in industry and

academics

84

Regular expressions

We use regular expressions to search for a
pattern in a string

For example, the Python function
re.search(pattern,string)

scans through the string and returns the first
match inside it for the pattern

85

Python syntax

We'll show regex as raw string with double quotes:

r"regex"

Raw strings treat backslashes as literal characters

Many regex patterns use backslashes.

86

A note about Python regular expressions

◦ Regex and Python both use backslash "\" for
special characters. You must type extra backslashes!

◦ "\\d+" to search for 1 or more digits

◦ "\n" in Python means the "newline" character, not a
"slash" followed by an "n". Need "\\n" for two characters.

◦ Instead: use Python's raw string notation for regex:
◦ r"[tT]he"

◦ r"\d+" matches one or more digits
◦ instead of "\\d+"

87

Regular expressions

The pattern

r"Buttercup"

matches the substring Buttercup in any string, like
the string

I’m called little Buttercup

88

Regular Expressions: Disjunctions

Letters inside square brackets []

Ranges using the dash [A-Z]

Pattern Matches

r"[mM]ary" Mary or mary

r"[1234567890]" Any one digit

Pattern Matches

r"[A-Z]" An upper case letter Drenched Blossoms

r"[a-z]" A lower case letter my beans were impatient

r"[0-9]" A single digit Chapter 1: Down the Rabbit Hole
89

Regular Expressions: Negation in Disjunction

Carat as first character in [] negates the list
◦ Note: Carat means negation only when it's first in []

◦ Special characters (., *, +, ?) lose their special meaning inside []

Pattern Matches Examples

r"[^A-Z]" Not upper case Oyfn pripetchik

r"[^Ss]" Neither ‘S’ nor ‘s’ I have no exquisite reason”

r"[^.]" Not a period Our resident Djinn

r"[e^]" Either e or ^ Look up ^ now

90

Kleene star and Kleene plus

baa!

baaa!

baaaa! ...

Kleene star * (0 or more of previous characters)
Kleene plus + (1 or more of previous character)

r"baaa*"

r"baa+"

Stephen C Kleene

91

Wildcard

The period means "any character"

r"." matches anything

r".*" matches any sequence of 0 or more
of anything

92

Regular Expressions: Anchors ^ $

Pattern Matches

r"^[A-Z]" Palo Alto

r"\.$" The end.

r".$" The end? The end!

93

Regular Expressions: More Disjunction

Groundhog is another name for woodchuck!

The pipe symbol | for disjunction

Pattern Matches

r"groundhog|woodchuck" woodchuck

r"yours|mine" yours

r"a|b|c" = [abc]

r"[gG]roundhog|[Ww]oodchuck" Woodchuck

94

Regular Expressions: Convenient aliases

Pattern Expansion Matches Examples

r"\d" [0-9] Any digit Fahreneit 451

r"\D" [^0-9] Any non-digit Blue Moon

r"\w" [a-ZA-Z0-9_] Any alphanumeric or
_

Daiyu

r"\W" [^\w] Not alphanumeric or _ Look!

r"\s" [\r\t\n\f] Whitespace (space,
tab)

Look␣up

r"\S" [^\s] Not whitespace Look up

95

The iterative process of writing regex's

Find me all instances of the word “the” in a text.

the

Misses capitalized examples

[tT]he

Incorrectly returns other or Theology

\W[tT]he\W
96

False positives and false negatives

The process we just went through was
based on fixing two kinds of errors:

1. Not matching things that we should have
matched (The)

False negatives

2. Matching strings that we should not have
matched (there, then, other)

False positives
97

Characterizing work on NLP

In NLP we are always dealing with these kinds of
errors.

Reducing the error rate for an application often
involves two antagonistic efforts:

◦ Increasing coverage (or recall) (minimizing false
negatives).

◦ Increasing accuracy (or precision) (minimizing false
positives)

98

Regular expressions play a surprisingly
large role

Widely used in both academics and
industry

1. Part of most text processing tasks, even
for big neural language model pipelines

◦ including text formatting and pre-
processing

2. Very useful for data analysis of any text
data 99

Words
and
Tokens

Regular Expressions

100

Words
and
Tokens

Substitutions, Capture
Groups, and Lookahead

101

Regex Substitutions in Python

To change every instance of cherry to apricot in
string:

re.sub(r"cherry", r"apricot",

string)

Upper case all examples of a name:

re.sub(r"janet", r"Janet", string)

102

Substitutions often need capture
groups

Change US format dates (mm/dd/yyyy) to
EU : (dd-mm-yyyy)

Pattern to match US:

r"\d{2}/\d{2}/\d{4}"

How to specify in the replacement that we
want to swap the date and month values?

103

Capture group

Use parentheses to capture (store) the values
that we matched in the search,

Groups have numbers

In repl, we refer back to that group with a
number command.

104

Capture group

re.sub(r"(\d{2})/(\d{2})/(\d{4})",

r"\2-\1-\3", string)}

Parens (and) around the two month digits, the
two day digits, and the four year digits,
This stores
◦ the first 2 digits in group 1,
◦ the second 2 digits in group 2,
◦ final digits in group 3.

Then in the repl string,
◦ \1, \2, and \3, refer to the 1st, 2nd, and 3rd registers.

105

That regex will

map

The date is 10/15/2011

to

The date is 15-10-2011

106

But suppose we don't want to capture?

Parentheses have a double function: grouping terms, and
capturing

Non-capturing groups: add a ?: after paren:

r"(?:some|a few) (people|cats) like some \1/"

matches
◦ some cats like some cats

but not
◦ some cats like some some

107

Lookahead assertions

(?= pattern) is true if pattern matches, but
is zero-width; doesn't advance character
pointer

(?! pattern) true if a pattern does not
match

How to capture the first word on the line, but
only if it doesn’t start with the letter T:

r"ˆ(?![tT])(\w+)\b"

108

Simple Application: ELIZA

Early NLP system that imitated a Rogerian
psychotherapist

◦ Joseph Weizenbaum, 1966.

Uses pattern matching to match, e.g.,:
◦ “I need X”

and translates them into, e.g.
◦ “What would it mean to you if you got X?

109

Simple Application: ELIZA
Men are all alike.
IN WHAT WAY

They're always bugging us about something or
other. CAN YOU THINK OF A SPECIFIC EXAMPLE

Well, my boyfriend made me come here.
YOUR BOYFRIEND MADE YOU COME HERE

He says I'm depressed much of the time.
I AM SORRY TO HEAR YOU ARE DEPRESSED

110

How ELIZA works

r.sub(r".* I’M (depressed|sad) .*",r"I AM

SORRY TO HEAR YOU ARE \1",input)

r.sub(r".* I AM (depressed|sad) .*,r"WHY

DO YOU THINK YOU ARE \1",input)

r.sub(r".* all .*",r"IN WHAT WAY?",input)

r.sub(r".* always .*",r"CAN YOU THINK OF A

SPECIFIC EXAMPLE?",input)

111

Words
and
Tokens

Substitutions, Capture
Groups, and Lookahead

112

