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How many words in a sentence?

They picnicked by the pool, then 

lay back on the grass and looked at 

the stars.

16 words
◦ if we don’t count punctuation marks as words

18 if we count punctuation
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How many words in an utterance?

"I do uh main- mainly business data 
processing"

Disfluencies
◦ Fragments main-
◦ Filled pauses: uh and um

◦ Should we consider these to be words? 
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How many words in a sentence?

They picnicked by the pool, then 

lay back on the grass and looked at 

the stars.

Type: an element of the vocabulary V
◦ The number of types is the vocabulary size |V|

Instance: an instance of that type in running text.
◦ 14 types and 16 instances (if we ignore punctuation).
◦ More questions: Are They and they the same word?
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How many words in a sentence?

I'm

Orthographically one word (in the English 
writing system)

But grammatically two words: 

1. the subject pronoun I 

2. the verb ’m, short for am. 
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How many words in a sentence?

Not every written language uses spaces!!

Chinese, Japanese and Thai don't!
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How to choose tokens in Chinese

Chinese words are composed of characters 
called "hanzi" (汉字) (or sometimes just "zi")
Each one represents a meaning unit called a 
morpheme.

Each word has on average 2.4 of them.

But deciding what counts as a word is complex 
and not agreed upon.
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How to do choose tokens in 
Chinese?

姚明进入总决赛 “Yao Ming reaches the finals” 
◦yáo míng jìn rù zǒng jué sài

3 words?
姚明 进入 总决赛
YaoMing reaches  finals 

5 words?
姚 明 进入 总 决赛
Yao    Ming    reaches    overall    finals 

7 words? 
姚 明 进 入 总 决 赛
Yao Ming enter enter overall decision game

Chinese Treebank

Peking University

Just use characters
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Tokenization across languages

So in Chinese we use characters (zi) as 
tokens

But that doesn't work for, e.g., Thai and 
Japanese
These differences make it hard to use words as 
tokens

And there's another reason why we don't 
use words as tokens!
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There are simply too many words!

Types = |V| Instances = N

Shakespeare 31 thousand 884,000

Brown Corpus 38 thousand 1 million

Switchboard conversations 20 thousand 2.4 million

COCA 2 million 440 million

Google N-grams 13+ million 1 trillion

Notice that (roughly) the bigger the corpora, 
the more words we find!
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There are simply too many words!
N = number of instances
|V |  = number of types in vocabulary V
Heaps Law = Herdan's Law

Vocab size for a text goes up with the square 
root of its length in words

Roughly 0.5
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Two kinds of words

Function words

Content words
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Tria, Loreto, Servedio, 201813



Why is too many words a problem?

No matter how big our vocabulary
There will always be words we missed!
We will always have unknown words!
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Words and Subwords

Because of these problems:
◦ Many languages don't have orthographic words
◦ Defining words post-hoc is challenging
◦ The number of words grows without bound

NLP systems don't use words, but smaller units called 
subwords

In the next lecture we'll start by introducing smaller units like 
morphemes and characters

15
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Words have parts

Morpheme: a minimal meaning-bearing unit in a 
language. 

fox:  one morpheme

cats:  two morphemes cat and –s

Morphology: the study of morphemes
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Morphemes in English and Chinese

Doc work-ed care-ful-ly wash-ing the 

glass-es 
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Types of morphemes

root: central morpheme of the word
- supplying the main meaning

affix: adding additional meanings

worked

root work
affix -ed 

glasses

root glass
affix -es
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Types of affixes
Inflectional morphemes
◦ grammatical morphemes 
◦ often syntactic role like agreement
–ed past tense on verbs 
-s/-es plural on nouns

Derivational morphemes
◦ more idiosyncratic in application and meaning 
◦ often change grammatical class
care (noun) 

+ -full→ careful (adjective) 
+ -ly→ carefully (adverb) 21



Clitics
A morpheme that acts syntactically like a word but:
◦ is reduced in form
◦ and attached to another word 

English:  've in I've ('ve can't appear alone)

English: ’s in the teacher’s book

French:  l’ in l’opera

Arabic:  b ‘by/with’,  w ‘and’. 
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Morphological Typology

Dimensions along which languages vary

Two are salient for tokenization:
1. number of morphemes per word
2. how easy it is to segment the 

morphemes 
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Number of morphemes per word

Few. Cantonese, spoken in Guangdong, Guangxi, Hong Kong
keoi5 waa6 cyun4 gwok3   zeoi3 daai6 gaan1     uk1     hai6 ni1 gaan1 
he      say     entire country most big    building house is    this building 

“He said the biggest house in the country was this one” 

Many. Koryak, Kamchatka peninsula in Russia, 
t-ə-nk’e-mejŋ-ə-jetemə-nni-k
1SG.S-E-midnight-big-E-yurt.cover-E-sew-1SG.S[PFV] 
“I sewed a lot of yurt covers in the middle of a night.” 
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Joseph Greenberg (1960) scale
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How easily segmentable

Agglutinative languages like Turkish
◦ Very clean boundaries between morphemes

Fusion languages
◦ a single affix may conflate multiple morphemes, 

◦ Russian  -om in stolom (table-SG-INSTR- DECL1) 
◦ instrumental, singular, and first declension. 

◦ English –s in "She reads the article"
◦ Means both "third person" and "present tense"

These are tendencies rather than absolutes
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Unicode

a method for representing text  written using
• any character  (more than 150,000!)
• in any script  (168 to date!)
• of the languages  of the world
• Chinese, Arabic, Hindi, Cherokee, Ethiopic, Khmer, N’Ko,…
• dead ones like Sumerian cuneiform
• invented ones like Klingon
• plus emojis, currency symbols, etc.
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ASCII: Some  history for English

1 byte per character 
◦ In principle 256 characters
◦ But high bit set to 0 
◦ So 7 bits = 128 
◦ However only 95 used 
The rest were for teletypes

1960s American Standard Code for Information Exchange
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ASCII: Some  history for English

h  e  l  l  o

68 65 6C 6C 6F 
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ASCII wasn't enough!

Spanish: Señor- respondió Sancho

This sentence has non-ASCII ñ and ó

About 100,000 Chinese/CJKV characters 
(Chinese, Japanese, Korean, or Vietnamese)

Devanagari script for 120 languages like 
Hindi, Marathi, Nepali, Sindhi, Sanskrit, etc. 
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Code Points

Unicode assigns a unique ID, a code point,  
to each of its 150,000 characters

1.1 million possible code points
◦ 0 – 0x10FFFF

Written in hex, with prefix "U+"
◦ a is U+0061 which = 0x0061

First 127 code points = ASCII 
◦ For backwards compatibility
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Some code points

A code point has no visuals; it is not a glyph!
Glyphs are stored in fonts:  a or a or a or a
But all of them are U+0061, abstract "LATIN SMALL A"
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Encodings and UTF-8

We don't stick code points directly in files

We store encodings of chars.

The most popular encoding is UTF-8

Most of the web is stored in UTF-8
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Encodings

hello has these 5 code points:
U+0068  U+0065 U+006C U+006C U+006F

How to write in a file? 

There are more than 1 million code points

So need 4 bytes (or 3 but 3 is inconvenient):
00 00 00 68 00 00 00 65 00 00 00 6C 00 00 00 6C 00 00 00 6F 

But that makes files very long!
◦ Also zeros are bad (since mean "end of string" in ASCII)
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Instead: Variable Length Encoding

UTF-8 (Unicode Transformation Format 8)
For the first 127 code points, same as ASCII
UTF-8 encoding of hello is : 
◦ 68 65 6C 6C 6F 

Code points ≥128 are encoded as a sequence 
of 2, 3, or 4 bytes 

◦ In range 128 - 255, so won’t be confused with ASCII
◦ First few bits say if its 2-byte, 3-byte, or 4-byte 
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UTF-8 Encoding

̃n, code point U+00F1, =  00000000 11110001
◦ Gets encoded with pattern 110yyyyy 10xxxxxx
◦ So is mapped to a two-byte bit sequence 
◦ 11000011 10110001 = 0xC3B1. 

yyy yyxxxxxx
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UTF-8 encoding

The first 127 characters (ASCII) map to 1 byte

Most remaining characters in European, Middle 
Eastern, and African scripts map to 2 bytes 

Most Chinese, Japanese, and Korean characters 
map to 3 bytes 

Rarer CJKV characters, emojis/symbols map to 
4 bytes. 
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UTF-8 encoding

Efficient: fewer bytes for common characters,

Doesn't use zero bytes (except for NULL 
character U+0000), 

Backwards compatible with ASCII,

Self-synchronizing, 
◦ If a file is corrupted, the nearest character boundary 

is  always findable by moving only up to 3 bytes
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UTF-8 and Python 3

Python 3 strings stored internally as Unicode
◦ each string a sequence of Unicode code points
◦ string functions, regex apply natively to code points. 

◦ len() returns string length in code points, not bytes 

Files need to be encoded/decoded when 
written or read
◦ Every file is stored in some encoding
◦ No such thing as a text file without an encoding

◦ If it's not UTF-8 it's something older like ASCII or iso_8859_1
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The NLP standard for tokenization

Instead of 
• white-space / orthographic words

• Lots of languages don't have them
• The number of words grows without bound

• Unicode characters
• Too small as tokens for many purposes

• morphemes
• Very hard to define

We use the data to tell us how to tokenize.
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Why tokenize?

Using a deterministic series of tokens means 
systems can be compared equally

◦ Systems agree on the length of a string

Eliminates the problem of unknown words
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Subword tokenization

Two most common algorithms:
◦ Byte-Pair Encoding (BPE) (Sennrich et al., 2016)
◦ Unigram language modeling tokenization (Kudo, 

2018) (sometimes confusingly called 
"SentencePiece" after the library it's in)

All have 2 parts:
◦ A token learner that takes a raw training corpus and 

induces a vocabulary (a set of tokens). 
◦ A token segmenter that takes a raw test sentence and 

tokenizes it according to that vocabulary 46



Byte Pair Encoding (BPE) token learner

Repeat:
◦ Choose most frequent 

neighboring pair ('A', 'B') 
◦ Add a new merged symbol 

('AB') to the vocabulary
◦ Replace every 'A' 'B' in the 

corpus with 'AB'. 

Until k merges

Vocabulary

[A, B, C, D, E]

[A, B, C, D, E, AB]

[A, B, C, D, E, AB, CAB]

Corpus
A  B  D  C  A  B  E  C  A  B 
AB D  C  AB E  C  AB
AB D  CAB E  CAB

Iteratively merge frequent neighboring tokens to create longer tokens.
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BPE algorithm

Generally  run within words

Don't merge across word boundaries
◦ First separate corpus by whitespace
◦ This gives a set of starting strings, with whitespace 

attached to front of them
◦ Counts come from the corpus, but can only merge 

within strings.
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BPE token learner algorithm
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Byte Pair Encoding (BPE) Addendum

Most subword algorithms are run inside 
space-separated tokens. 

So we commonly first add a special end-of-
word symbol '__' before space in training 
corpus

Next, separate into letters.
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BPE token learner
Original (very fascinating🙄) corpus:

set␣new␣new␣renew␣reset␣renew

Put space token at start of words
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BPE token learner

Merge n e to ne (count 4 = 2 new + 2 renew)
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BPE token learner

Merge ne w to new (count 4)
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BPE token learner

Merge ␣ r to ␣r (count 4) and ␣r e to ␣re (count 3)

System has learned prefix re- !
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BPE

The next merges are:

55
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BPE encoder algorithm
Tokenize a test sentence: run each merge learned 
from the training data:

◦ Greedily, in the order we learned them
◦ (test frequencies don't play a role)

First: segment each test word into characters
Then run rules: (1) merge every n e to ne, (2) merge 
ne w to new, (3) ␣r, (4) ␣re  etc.
Result: 
◦ Recreates training set words
◦ But also learns subwords like ␣re that might appear in 

new words like rearrange
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BPE and Unicode

Run on large Unicode corpora, with vocabulary 
sizes of 50,000 to 200,000

On individual bytes of UTF-8-encoded text.
◦ BPE rediscovers 2-byte and common 3-byte UTF-8 

sequences
◦ Only 256 possible values of a byte, so no unknown 

tokens 
◦ (BPE might learn a few illegal UTF-8 sequences 

across character boundaries, but these can be filtered)
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Visualizing GPT4o tokens

Tokens: 11865, 8923, 11, 31211, 6177, 23919, 885, 220, 19427, 7633, 18887, 147065, 0 

Most words are tokens, w/initial space
Clitics like ’s
◦ Are segmented off Jane
◦ But part of frequent words like she’s

Numbers segmented into chunks of 3 digits
Some of this is from preprocessing
◦ regular expressions for chunking digits, stripping clitics

Tat Dat Duong’s Tiktokenizer visualizer

58

https://tiktokenizer.vercel.app/


Tokenizing across languages

Even though BPE tokenizers are multilingual

LLM training data is still vastly dominated by 
English

Most BPE tokens used for English, leaving less for 
other languages
Words in other languages are often split up
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Tokenization is better in English

A recipe sentence in two languages

Tat Dat Duong’s Tiktokenizer visualizer on GPT4o

English: 18 tokens; no words are split into multiple tokens): 

Spanish: 33 tokens; 6/16 words are split
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Rule-based tokenization

Although subword tokenization is the norm

Sometimes we need particular tokens

Like for parsing, where the parser needs 
grammatical words, or social science
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Issues for rule-based tokenization
Mostly but not always remove punctuation:
◦ m.p.h., Ph.D., AT&T, cap’n
◦ prices ($45.55)
◦ dates (01/02/06)
◦ URLs (http://www.stanford.edu)
◦ hashtags (#nlproc)
◦ email addresses (someone@cs.colorado.edu)

Numbers are tokenized differently across 
languages

◦ English 555,500.50 = French 555 500,50

Multiword expressions (MWE)?
◦ New York, rock ’n’ roll 64



Penn Treebank Tokenization Standard
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Tokenization in NLTK
Bird, Loper and Klein (2009), Natural Language Processing with Python. O’Reilly
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Sentence Segmentation
!, ? mostly unambiguous but period “.” is very 
ambiguous

◦ Sentence boundary
◦ Abbreviations like Inc. or Dr.
◦ Numbers like .02% or 4.3

Common algorithm: Tokenize first: use rules or ML 
to classify a period as either (a) part of the word or 
(b) a sentence-boundary. 

◦ An abbreviation dictionary can help

Sentence segmentation can then often be done by 
rules based on this tokenization.
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Space-based tokenization

A very simple way to tokenize
◦ For languages that use space characters between 

words
◦ Arabic, Cyrillic, Greek, Latin, etc., based writing systems

◦ Segment off a token between instances of spaces

Unix tools for space-based tokenization
◦ The "tr" command
◦ Inspired by Ken Church's UNIX for Poets
◦ Given a text file, output the word tokens and their 

frequencies 68



Simple Tokenization in UNIX
(Inspired by Ken Church’s UNIX for Poets.)
Given a text file, output the word tokens and their 
frequencies
tr -sc ’A-Za-z’ ’\n’ < shakes.txt

| sort 

| uniq –c 

1945 A

72 AARON

19 ABBESS

5 ABBOT

... ...

25 Aaron

6 Abate

1 Abates

5 Abbess

6 Abbey

3 Abbot

....   …

Change all non-alpha to newlines

Sort in alphabetical order

Merge and count each type

69



The first step: tokenizing

tr -sc ’A-Za-z’ ’\n’ < shakes.txt | head

THE

SONNETS

by

William

Shakespeare

From

fairest

creatures

We

...
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The second step: sorting

tr -sc ’A-Za-z’ ’\n’ < shakes.txt | sort | head

A

A

A

A

A

A

A

A

A

...
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More counting
Merging upper and lower case
tr ‘A-Z’ ‘a-z’ < shakes.txt | tr –sc ‘A-Za-z’ ‘\n’ | sort | uniq –c 

Sorting the counts
tr ‘A-Z’ ‘a-z’ < shakes.txt | tr –sc ‘A-Za-z’ ‘\n’ | sort | uniq –c | sort –n –r

23243 the

22225 i

18618 and

16339 to

15687 of

12780 a

12163 you

10839 my

10005 in

8954  d

What happened here?
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Corpora

Words don't appear out of nowhere! 
A text is produced by 
• a specific writer(s), 
• at a specific time, 
• in a specific variety,
• of a specific language, 
• for a specific function.
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Corpora vary along dimensions like

Language: 7097 languages in the world

It's important to test algorithms on multiple 
languages

What may work for one may not work for 
another
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Corpora vary along dimensions like

Variety, like African American English 
varieties

◦ AAE Twitter posts might include forms like "iont" (I 
don't)

Genre: newswire, fiction, scientific articles, 
Wikipedia

Author Demographics: writer's age, gender, 
ethnicity, socio-economic status 
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Code Switching

Speakers use multiple languages in the same 
utterance
This is very common around  the world
Especially in spoken language and related 
genres like texting and social media
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Code Switching: Spanish/English

Por primera vez veo a @username actually 
being hateful! It was beautiful:) 

[For the first time I get to see @username 
actually being hateful! it was beautiful:) ] 
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Code Switching: Hindi/English

dost tha or ra- hega ... dont wory ... but dherya
rakhe

[“he was and will remain a friend ... don’t worry ... 
but have faith”] 
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Corpus datasheets

Motivation: 
• Why was the corpus collected?
• By whom? 
• Who funded it? 

Situation: In what situation was the text written?
Collection process: If it is a subsample how was it 
sampled? Was there consent? Pre-processing?

+Annotation process, language variety, demographics, 
etc.

Gebru et al (2020), Bender and Friedman (2018)
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Regular expressions are used everywhere

◦ A formal language for specifying text 
strings

◦ Part of every text processing task
◦ Often a useful pre-processing or text formatting 

step, for example for BPE tokenization
◦ Also necessary for data analysis of text
◦ A widely used tool in industry and 

academics

84



Regular expressions

We use regular expressions to search for a 
pattern in a string

For example, the Python function 
re.search(pattern,string)

scans through the string and returns the first 
match inside it for the pattern

85



Python syntax

We'll show regex as raw string with double quotes: 

r"regex"

Raw strings treat backslashes as literal characters

Many regex patterns use backslashes. 
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A note about Python regular expressions

◦ Regex and Python both use backslash "\" for 
special characters. You must type extra backslashes!

◦ "\\d+" to search for 1 or more digits

◦ "\n" in Python means the "newline" character, not a 
"slash" followed by an "n". Need "\\n" for two characters.

◦ Instead: use Python's raw string notation for regex:
◦ r"[tT]he"

◦ r"\d+" matches one or more digits
◦ instead of "\\d+"
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Regular expressions

The pattern 

r"Buttercup" 

matches the substring Buttercup in any string, like 
the string 

I’m called little Buttercup
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Regular Expressions: Disjunctions

Letters inside square brackets []

Ranges using the dash [A-Z]

Pattern Matches

r"[mM]ary" Mary or mary

r"[1234567890]" Any one digit

Pattern Matches

r"[A-Z]" An upper case letter Drenched Blossoms

r"[a-z]" A lower case letter my beans were impatient

r"[0-9]" A single digit Chapter 1: Down the Rabbit Hole
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Regular Expressions: Negation in Disjunction

Carat as first character in [] negates the list
◦ Note: Carat means negation only when it's first in []

◦ Special characters (., *, +, ?) lose their special meaning inside []

Pattern Matches Examples

r"[^A-Z]" Not upper case Oyfn pripetchik

r"[^Ss]" Neither ‘S’ nor ‘s’ I have no exquisite reason”

r"[^.]" Not a period Our resident Djinn

r"[e^]" Either e or ^ Look up ^ now
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Kleene star and Kleene plus

baa! 

baaa! 

baaaa! ...

Kleene star * (0 or more of previous characters)
Kleene plus + (1 or more of previous character)

r"baaa*" 

r"baa+"

Stephen C Kleene
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Wildcard

The period means "any character"

r"." matches anything

r".*" matches any sequence of 0 or more 
of anything
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Regular Expressions: Anchors  ^   $

Pattern Matches

r"^[A-Z]" Palo Alto

r"\.$" The end.

r".$" The end? The end!
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Regular Expressions: More Disjunction

Groundhog is another name for woodchuck!

The pipe symbol | for disjunction

Pattern Matches

r"groundhog|woodchuck" woodchuck

r"yours|mine" yours

r"a|b|c" = [abc]

r"[gG]roundhog|[Ww]oodchuck" Woodchuck
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Regular Expressions: Convenient aliases

Pattern Expansion Matches Examples

r"\d" [0-9] Any digit Fahreneit 451

r"\D" [^0-9] Any non-digit Blue Moon

r"\w" [a-ZA-Z0-9_] Any alphanumeric or 
_

Daiyu

r"\W" [^\w] Not alphanumeric or _ Look!

r"\s" [ \r\t\n\f] Whitespace (space, 
tab)

Look␣up

r"\S" [^\s] Not whitespace Look up
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The iterative process of writing regex's

Find me all instances of the word “the” in a text.

the

Misses capitalized examples

[tT]he

Incorrectly returns other or Theology

\W[tT]he\W
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False positives and false negatives

The process we just went through was 
based on fixing two kinds of errors:

1. Not matching things that we should have 
matched (The)

False negatives

2. Matching strings that we should not have 
matched (there, then, other)

False positives
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Characterizing work on NLP

In NLP we are always dealing with these kinds of 
errors.

Reducing the error rate for an application often 
involves two antagonistic efforts: 

◦ Increasing coverage (or recall) (minimizing false 
negatives).

◦ Increasing accuracy (or precision) (minimizing false 
positives)
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Regular expressions play a surprisingly 
large role

Widely used in both academics and 
industry

1. Part of most text processing tasks, even 
for big neural language model pipelines

◦ including text formatting and pre-
processing

2. Very useful for data analysis of any text 
data 99
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Regex Substitutions in Python

To change every instance of cherry to apricot in 
string: 

re.sub(r"cherry", r"apricot", 

string)

Upper case all examples of a name: 

re.sub(r"janet", r"Janet", string)
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Substitutions often need capture 
groups

Change US format dates (mm/dd/yyyy) to 
EU : (dd-mm-yyyy)

Pattern to match US:

r"\d{2}/\d{2}/\d{4}"

How to specify in the replacement that we 
want to swap the date and month values? 
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Capture group

Use parentheses to capture (store) the values 
that we matched in the search, 

Groups have numbers

In repl, we refer back to that group with a 
number command. 
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Capture group

re.sub(r"(\d{2})/(\d{2})/(\d{4})", 

r"\2-\1-\3", string)}

Parens ( and ) around the two month digits, the 
two day digits, and the four year digits,
This stores 
◦ the first 2 digits in group 1, 
◦ the second 2 digits in group 2, 
◦ final digits in group 3. 

Then in the repl string, 
◦ \1, \2, and \3, refer to the 1st, 2nd, and 3rd registers. 
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That regex will

map

The date is 10/15/2011

to 

The date is 15-10-2011
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But suppose we don't want to capture?

Parentheses have a double function: grouping terms, and 
capturing

Non-capturing groups: add a ?: after paren:

r"(?:some|a few) (people|cats) like some \1/"

matches 
◦ some cats like some cats 

but not 
◦ some cats like some some
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Lookahead assertions

(?= pattern) is true if pattern matches, but 
is zero-width; doesn't advance character 
pointer

(?! pattern) true if a pattern does not 
match 

How to capture the first word on the line, but 
only if it doesn’t start with the letter T:

r"ˆ(?![tT])(\w+)\b"
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Simple Application: ELIZA

Early NLP system that imitated a Rogerian 
psychotherapist 

◦ Joseph Weizenbaum, 1966. 

Uses pattern matching to match, e.g.,:
◦ “I need X” 

and translates them into, e.g.
◦ “What would it mean to you if you got X? 
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Simple Application: ELIZA
Men are all alike.
IN WHAT WAY

They're always bugging us about something or 
other. CAN YOU THINK OF A SPECIFIC EXAMPLE 

Well, my boyfriend made me come here.
YOUR BOYFRIEND MADE YOU COME HERE 

He says I'm depressed much of the time.
I AM SORRY TO HEAR YOU ARE DEPRESSED 
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How ELIZA works

r.sub(r".* I’M (depressed|sad) .*",r"I AM 

SORRY TO HEAR YOU ARE \1",input)

r.sub(r".* I AM (depressed|sad) .*,r"WHY

DO YOU THINK YOU ARE \1",input)

r.sub(r".* all .*",r"IN WHAT WAY?",input)

r.sub(r".* always .*",r"CAN YOU THINK OF A 

SPECIFIC EXAMPLE?",input)
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