Words

How many words In a sentence?

They picnicked by the pool, then
lay back on the grass and looked at

the stars.

16 words
o If we don't count punctuation marks as words

18 if we count punctuation

How many words in an utterance?

' do uh main- mainly business data
processing’

Disfluencies
o Fragments rmain-
o Filled pauses.: uhand um

o Should we consider these to be words?

How many words In a sentence?

They picnicked by the pool, then
lay back on the grass and looked at

the stars.

Type: an element of the vocabulary V
> The number of types is the vocabulary size |V|

Instance: an instance of that type in running text.
> 14 types and 16 instances (if we ignore punctuation).
o More questions: Are They and they the same word?

How many words In a sentence?

I'm

Orthographically one word (in the English
writing system)

But grammatically two words:
1. the subject pronoun |
2. the verb 'm, short for am.

How many words In a sentence?

Not every written language uses spaces!!

Chinese, Japanese and Thai don't!

How to choose tokens in Chinese

Chinese words are composed of characters
called 'hanzi" GX=£) (or sometimes just "zi")

Each one represents a meaning unit called a
morpheme.

Each word has on average 2.4 of them.

But deciding what counts as a word is complex
and not agreed upon.

I TOW LU UL CLTI10V0UVUOSC LUNCIT IO 1T
Chinese?

WEARIFE A ERZR “Yao Ming reaches the finals'
°y&0 mMing jin ru zéng jué sai

words? T
AR HA VR FR Chinese Treebank
YaoMing reaches finals
A Y
) \L 700 ; \% . . .
Yao Ming reaches overall finals Peking University
7 words? - \ ﬁ
QJE HeooE A R o Just use characters

Yao Ming enter enter overall decision game

Tokenization across languages

So In Chinese we use characters (zi) as
tokens

But that doesn't work for, e.g., Thai and
Japanese

These differences make it hard to use words as
tokens

And there's another reason why we don't
use words as tokens!

There are simply too many words!

Notice that (roughly) the bigger the corpora,
the more words we find!

_____[Types-\V

Shakespeare 31 thousand 884,000
Brown Corpus 38 thousand 1 million
Switchboard conversations 20 thousand 2.4 million
COCA 2 million 440 million

Google N-grams 13+ million 1 trillion

There are simply too many words!

N = number of instances
V| =number of types in vocabulary V
Heaps Law = Herdan's Law

‘Vl _ kNﬁ<— Roughly 0.5

Vocab size for a text goes up with the square
root of its length in words

Two kinds of words

Function words
Content words

10° } :
& 10° r
E Jd
e 10 |
.
O 10 5 *

) — -

m— =LA

10¢ 10° 10* 10° 10% 107 10* 10°
total number of words (w)

Tria. Loreto, Servedio. 2018

Why Is too many words a problem?

No matter how big our vocabulary
There will always be words we missed!
We will always have unknown words!

Words and Subwords

Because of these problems:
- Many languages don't have orthographic words

> Defining words post-hoc is challenging
> The number of words grows without bound

NLP systems don't use words, but smaller units called
subwords

In the next lecture we'll start by introducing smaller units like
morphemes and characters

Words

Morphemes

Words have parts

Morpheme: a minimal meaning-bearing unit in a
language.

fox. one morpheme
cats: two morphemes cat and —s

Morphology: the study of morphemes

Morphemes in English and Chinese

Doc work-ed care-ful-ly wash-1ng the
glass-es

L - AW & W ¥ A IF wE L # T
plum dry vegetable use clear water soak soft |, remove out after , drip dry
BB

chop fragment

Soak the preserved vegerable in water until 20T, remove, dran, and chop

Types of morphemes

root: central morpheme of the word
- supplying the main meaning
affix: adding additional meanings

worked
root work
affix —ed
glasses
rootglass
arfix —es

Types of affixes

Inflectional morphemes
o grammatical morphemes
o often syntactic role like agreement

—ed past tense on verbs
-s/—-es plural on nouns

Derivational morphemes
o more idiosyncratic in application and meaning
o often change grammatical class
care (noun)
+ -full 2 careful (agjective
+ -1y 2 carefully (@dverb)

Clitics

A morpheme that acts syntactically like a word but:
> is reduced in form
- and attached to another word

English: 'vein I've ('ve can't appear alone)
English: s in the teacher’s book

French: 17 iIn 1’ opera

Arabic: b ‘by/with’, w ‘and’.

Morphological Typology

Dimensions along which languages vary

Two are salient for tokenization:
1. number of morphemes per word

2. how easy it is to segment the
morphemes

Number of morphemes per word

Few. Cantonese spoken in Guangdong, Guangxi, Hong Kong
keois waab cyundg gwoks zeolz daalb gaani uki hai6 ni1 gaani
he say entire country most big building house is this building

‘He said the biggest house in the country was this one”

Many. Koryak, Kamchatka peninsula in Russia,

t-o-nk e-mejn-o-jetemao-nni-k
1SG.S-E-midnight-big-E-yurt.cover-E-sew-1SG.SIPF V]
"I sewed a lot of yurt covers in the middle of a night.”

Joseph Greenberg (1960) scale

2 S &
N : S
N O @&

oy \ S O AN R\
\ e &N R R
KRR SIS P o

5 19 L 2.12.2 2526 3.7

-§- ® @ D — 9 m—c i
Analytic Synthetic Polysynthetic

Morphemes per Word

How easily segmentable

Agglutinative languages like Turkish

> Very clean boundaries between morphemes

Fusion languages
> a single affix may conflate multiple morphemes,

o Russian -omin stolom (table-SG-INSTR- DECL1)

o instrumental, singular, and first declension.
- English —s in"She reads the article’
> Means both "third person” and "present tense’

These are tendencies rather than absolutes

Morphemes

Unicode

Unicode

a method for representing text written using
* any character (more than 150,000!)
* inany script (168 to date!)

« of the languages of the world
« Chinese, Arabic, Hindi, Cherokee, Ethiopic, Khmer, N'Ko,..
« dead ones like Sumerian cuneiform
* invented ones like Klingon
« plus emojis, currency symbols, etc.

ASCIl: Some history for English

1960s American Standard Code for Information Exchange

1 byte per character
o In principle 256 characters
> But high bit setto 0

> S0 7 bits = 128

- However only 95 used
The rest were for teletypes

ASCIl: Some history for English

Ch Hex Dec Ch Hex Dec Ch Hex Dec Ch Hex Dec
<A 60 & 0 & o N K9 & %
= 3D 61 A 41 6 .. [SD 9 a 61 97
> 3 62 B 42 6 .. "~ SE 9% b 62 98
? 3F 63 € 43 67 .. _ SF 95 ¢ 63 9

h e 1 1 o
63 65 6C 0C oF

ASCIlI wasn't enough!

Spanish: Senor- respondio Sancho
This sentence has non-ASCIl hand o

About 100,000 Chinese/ CJKV characters
(Chinese, Japanese, Korean, or Viethamese)

Devanagari script for 120 languages like
Hindi, Marathi, Nepali, Sindhi, Sanskrit, etc.

WEBT oo Bt e S A e Aen wofer sl wfter F e o €1 & 8 F i
0w & svre € ur o€ wrgen o v @ gree & 5l ord e ey

Code Points

Unicode assigns a unique ID, a code point,
to each of its 150,000 characters

1.1 million possible code points
> 0 - OX10FFFF

Written in hex, with prefix "U+"
> al1s U+0061 which = 0x0061

First 127 code points = ASCII

> For backwards compatibility

Some code points

8061 a
@962 b
8963 «c
8OF9 10
8OFL
SOFE 1
SOFC 1
BFDR it
8FDC i
BFDD 1%
SFDE iE
1FEGH =
1FGGE 4

LATIN SMALL LETTER A

LATIN SMALL LETTER B

LATIN SMALL LETTER C

LATIN SMALL LETTER U WITH GRAVE
LATIN SMALL LETTER U WITH ACUTE
LATIN SMALL LETTER U WITH CIRCUMFLEX
LATIN SMALL LETTER U WITH DIAERESIS

GRINNING FACE
MAHIONG TILE EIGHT OF CHARACTERS

A code point has no visuals; it is not a glyph!
Glyphs are stored in fonts: aoraoraora
But all of them are U+0061, abstract "LATIN SMALL A’

Encodings and UTF-8

We don't stick code points directly in files
We store encodings of chars.

The most popular encoding is UTF-8
Most of the web is stored in UTF-8

Encodings

hello has these 5 code points:
U+0068 U+0065 U+006C U+006C U+006F

How to write in a file?
There are more than 1 million code points

So need 4 bytes (or 3 but 3 is inconvenient);
00 00 00 68 00 00 00 65 OO0 00 00 6C 00 00 00 6C 00 00 00 6F

But that makes files very long!
> Also zeros are bad (since mean "end of string" in ASCI|I)

Instead: Variable Length Encoding

UTF-8 (Unicode Transformation Format 8)
For the first 127 code points, same as ASCI|

UTF-8 encoding of hellols:
> 68 65 6C 6C 6F

Code points 2128 are encoded as a sequence

of 2, 3, or 4 bytes
> In range 128 - 255, so won't be confused with ASCI

o First few bits say If its 2-byte, 3-byte, or 4-byte

UTF-8 Encoding

Coade Painis UTF-% Enceding

From - Ta Bil Yalue Byte 1 Byte 2 Byvie 3 Byie d
U+ U -+HWOTF EREXREX EERREAKR

U+ d-U+HFTFF OO0 vy yYREEREXK 1 Ilywyy IxiExx

U+0&0d-U+FFFF EEEIVVYY FYRERLER 111 ez Ihvyvyvy llaxxzxx
U+010H)-U+10FFFF (hauguy 2222y Vyy YyEIEREX 111 1{gua Ihauzrrr Ilvyvyyy l0xxxxxx

VVV YVYXXXXXX
n, code point U+00F1, = 00000000 11110001

> Gets encoded with pattern 110yyyyy 10XXXXXX
> S0 IS mapped to a two-byte bit sequence
© 11000011 10110001 = OxC3B1.

UTF-8 encoding

The first 127 characters (ASCIl) map to 1 byte

Most remaining characters in European, Middle
Eastern, and African scripts map to 2 bytes

Most Chinese, Japanese, and Korean characters
map to 3 bytes

Rarer CJKV characters, emojis/symbols map to
4 bytes.

UTF-8 encoding

Efficient. fewer bytes for common characters,

Doesn't use zero bytes (except for NULL
character U+0000),

Backwards compatible with ASCII,

Self-synchronizing,
o If a file is corrupted, the nearest character boundary
Is always findable by moving only up to 3 bytes

UTF-8 and Python 3

Python 3 strings stored internally as Unicode

o each string a sequence of Unicode code points

o string functions, regex apply natively to code points.
> len() returns string length in code points, not bytes

Files need to be encoded/decoded when

written or read

> Every file is stored in some encoding

> No such thing as a text file without an encoding
o Ifit's not UTF-8 it's something older like ASCII or iso_8859_1

Unicode

\Words Byte Pair Encoding

and
Tokens

The NLP standard for tokenization

Instead of

* white-space / orthographic words
* Lots of languages don't have them
* The number of words grows without bound

» Unicode characters
» Too small as tokens for many purposes

* morphemes
* Very hard to define

We use the data to tell us how to tokenize.

Why tokenize?

Using a deterministic series of tokens means
systems can be compared equally
o Systems agree on the length of a string

Eliminates the problem of unknown words

Subword tokenization

Two most common algorithms:
> Byte-Pair Encoding (BPE) (Sennrich et al., 2016)

- Unigram language modeling tokenization (Kudo,
2018) (sometimes confusingly called
‘SentencePiece’ after the library it's in)

All have 2 parts:

- Atoken learner that takes a raw training corpus and
induces a vocabulary (a set of tokens).

- Atoken segmenter that takes a raw test sentence and
tokenizes it according to that vocabulary

Byte Pair Encoding (BPE) token learner

lteratively merge frequent neighboring tokens to create longer tokens.,

Repeat Vocabulary
> Choose most frequent A, B, C, D, El
neighboring pair (‘A', 'B’) A B C D E AB]
> Add a new merged symbol T
('AB') to the vocabulary A, B, C, D, E, AB, CABI
- Replace every 'A"'B'in the Corpus

corpus with 'AB'.
ABDCABECARB

AB D C AB E C AB
AB D CAB E CAB

Until A merges

BPE algorithm

Generally run within words

Don't merge across word boundaries
> First separate corpus by whitespace

> This gives a set of starting strings, with whitespace
attached to front of them

- Counts come from the corpus, but can only merge
within strings.

BPE token learner algorithm

function BYTE-PAIR ENCODING(strings C, number of merges k) returns vocab V

V<—all unique characters in C # initial set of tokens is characters
fori=1tok do # merge tokens til k times
11, tr <—Most frequent pair of adjacent tokens in C
Inew <11 + IR # make new token by concatenating
V<V +tyew # update the vocabulary
Replace each occurrence of 17, tg in C with tyzy # and update the corpus

return V

Byte Pair Encoding (BPE) Addendum

Most subword algorithms are run inside
space-separated tokens.

So we commonly first add a special end-of-
word symbol '__" before space In training

COrpus
Next, separate into letters.

BPE token learner
Original (very fascinating @) corpus:

setlinewllnewllrenewlresetiirenew

Put space token at start of words

corpus vocabulary

2 _h B8 W -y 8, A, F, 5, T, W
2 e mnéewW

| 5 et

| . re s et

BPE token learner

COFpUs vocabulary

2 - e w -y By Ry Py 5, T, W
2 . remnmew

| 5 et

| . re s gt

Merge n e to ne (count 4 = 2 new + 2 renew)

COrpus vocabulary

2 _ e W wy B, M, ¥, 5, t, W, ne
2 T B e W

| s e t

| . reset

BPE token learner

corpus vocabulary

2 _ne W wy 8, N, I, 5, t, W, Ne
2 I B Née W

| 5§ &8 t

| . reset

Merge ne w to new (count 4)

COT pus vicabulary

2 _ MEwW ., B, A, I, 8, T, W, N8, NeW
2 _ F & new
] s 8t

] _Fes5et

BPE token learner

COT pus vicabulary

2 _ TeEwW Ly B, A, I, 85, T, W, N8, NeW
2 _ F & new

] s 8t

] _Fes5et

Merge 00 r to Or (count 4) and OOr e to Ore (count 3)

COrpus vocabulary

2 _ hew -y B, N, F, 5, t, W, Ne, newW, .r, .Ie
2 Jre new

| 5 8 T

|

reset System has learned prefix re- |

BPE

The next merges are:

merge current voscabualary

{ W= - B, A, F, %, L, W, O&, O, I, e, -O&W

{-re, new e, N, r, s, t, W, 0=, new, -r, -re, -N&eW, -renew

{5, &} -, B, 0, F, 5, L, W, &, O&W, I, -I'®e, -N&W, -TBENeEW, S&
{ga, €] -, ®=. 0, r, %, t, W, O=, O&W, -I, -Ir'e, -N&W, -TEN&EW, e, Zgt

55

BPE encoder algorithm

Tokenize a test sentence: run each merge learned
from the training data:

o Greedily, in the order we learned them
o (test frequencies don't play a role)

First: segment each test word into characters

Then run rules: (1) merge every n e to ne, (2) merge
newtonew, (3) 0r, (4) Ore etc.

Result:
o Recreates training set words

> But also learns subwords like Ore that might appear in
new words like rearrange

BPE and Unicode

Run on large Unicode corpora, with vocabulary
sizes of 50,000 to 200,000

On individual bytes of UTF-8-encoded text.

- BPE rediscovers 2-byte and common 3-byte UTF-8
sequences

> Only 256 possible values of a byte, so no unknown
tokens

- (BPE might learn a few illegal UTF-8 sequences
across character boundaries, but these can be filtered)

Visualizing GPT40 tokens

Tat Dat Duong's Tiktokenizer visualizer

Anyhow, -she's-seen-Jane’s-224123-flowers-anyhow!
Tokens: 11865, 8923, 11, 31211, 6177, 23919, 885, 220, 19427, 7633, 18887, 1470065, O
Most words are tokens, w/Initial space
Clitics like 's

> Are segmented off Jane
> But part of frequent words like she's

Numbers segmented into chunks of 3 digits

Some of this is from preprocessing
> regular expressions for chunking digits, stripping clitics

https://tiktokenizer.vercel.app/

Tokenizing across languages

Even though BPE tokenizers are multilingual

LLM training data is still vastly dominated by
English
Most BPE tokens used for English, leaving less for
other languages

Words in other languages are often split up

Tokenization is better in English

Tat Dat Duong's Tiktokenizer visualizer on GPT40

A recipe sentence in two languages

English: 18 tokens; no words are split into multiple tokens):

In-a deep-bowl, ‘mix- -the-orange-julce with:the-sugar, g
inger, ‘and nutmeqg.

Spanish: 33 tokens; 6/16 words are split

En-un-recipiente-hondo, ‘mezclar-el-jugo-de-naranja-con
‘el azdcar, - jengibre, 'y nuez-moscada,

https://tiktokenizer.vercel.app/

\Words Byte Pair Encoding

and
Tokens

Rule-based tokenization
Words and

clgle! Simple Unix tools
Tokens

Rule-based tokenization

Although subword tokenization is the norm
Sometimes we need particular tokens

Like for parsing, where the parser needs
grammatical words, or social science

ssues for rule-based tokenization

Mostly but not always remove punctuation:
m.p.h., Ph.D., AT&T, cap'n

prices ($45.55)

dates (01/02/06)

URLs (http://www.stanford.edu)

hashtags (#nlproc)

email addresses (someone@cs.colorado.edu)

Numbers are tokenized differently across
languages
- English 555,500.50 = French 555 500,50

Multiword expressions (MWE)?
o New York rock 'n' roll

(0] o (0] (0] (0] o

Penn Treebank Tokenization Standard

Input: "The 5an Francisco-based restaurant,” they said,
"doesn't charge $1&".

Output: "_The San Francisco-based restaurant ., " _they said_,_
" does n"t charge $_18."_.

Tokenization iIn NLTK

Bird, Loper and Klein (2009), Natural Language Processing with Python. O'Reilly

=#» text = "That U.5.A. poster-print costs S12.46...°

»xr pattern = """ {7x) ¢ set flag to allow verbose regexps

- s [F:[A-Z]%.)+ ¥ abbreviations, e.g. U.5.A.

2w | w7 - ¢ words with optional internal hyphens
i | SE5a+ {70 \d+) 7T F currency, percentages, e.g. 512.46, 81%
| %%, ¢ ellipsis

‘e | CIQ-ci" " F{F:_"-1 @& these are separate tokens; includes], [

x> nltk.regexp_tokenize(text, pattern)
["That', 'U.5.A.", "poster-print', "costs', '§12.46", "..."]

Sentence Segmentation

|, ? mostly unambiguous but period “." is very
ambiguous

> Sentence boundary

o Abbreviations like Inc. or Dr.

o Numbers like .02% or 4.3

Common algorithm: Tokenize first: use rules or ML
to classify a period as either (a) part of the word or
(b) a sentence-boundary.

- An abbreviation dictionary can help

Sentence segmentation can then often be done by
rules based on this tokenization.

Space-based tokenization

A very simple way to tokenize

o For languages that use space characters between
words

> Arabic, Cyrillic, Greek, Latin, etc., based writing systems
o Segment off a token between instances of spaces

Unix tools for space-based tokenization
> The "tr" command
o Inspired by Ken Church’'s UNIX for Poets

> Given a text file, output the word tokens and their
frequencies

Simple Tokenization in UNIX
(Inspired by Ken Church's UNIX for Poets.)

Given a text file, output the word tokens and their

frequencies

tr -sc "A-Za-z'

| sort
| unig —c
1945 A
72 AARON
19 ABBESS 2
5 ABBOT

W oy U1 ooy Ul

Change all non-alpha to newlines

"\n’ < shakes. txt
Sort in alphabetical order

Aaron
Abate
Abates
Abbess
Abbey
Abbot

Merge and count each type

The first step: tokenizing

tr -sc 'A-Za-z’' ’'\n’ < shakes.txt | head

THE

SONNETS

by

William
Shakespeare
From
fairest
creatures

We

The second step: sorting

tr -sc 'A-Za-z’ ’'\n’ < shakes.txt | sort | head

S = R D - -

More counting

Merging upper and lower case

tr ‘A-Z’ ‘a-z'’ < shakes.txt | tr -sc ‘A-Za-z’ ‘\n’ | sort | unig -c

Sorting the counts

tr ‘A-Z’ ‘a-z’ < shakes.txt | tr -sc ‘A-Za-z’ ‘\n’ | sort | unig -c | sort -n -r

23243 the

22225 1

18618 and

16339 to

15687 of

12780 a

12163 you What happened here?
10839 my

10005 1in

8954 d

Rule-based tokenization
Words and

clgle Simple Unix tools
Tokens

\X/ords Corpora

and
Tokens

Corpora

Words don't appear out of nowhere!
A text is produced by

* a specific writer(s),

e at a specific time,

* In a specific variety,

» of a specific language,

» for a specific function.

Corpora vary along dimensions like

_anhguage: 7097 languages in the world

t's important to test algorithms on muiltiple
languages

What may work for one may not work for
another

Corpora vary along dimensions like

Variety, like African American English
varieties

> AAE Twitter posts might include forms like "jont” (/
adon't)

Genre: newswire, fiction, scientific articles,
Wikipedia

Author Demographics: writer's age, gender,
ethnicity, socio-economic status

Code Switching

Speakers use multiple languages in the same
utterance

This is very common around the world

Especially in spoken language and related
genres like texting and social media

Code Switching: Spanish/English

Por primera vez veo a @username actually
being hateful! It was beautiful:)

[For the first time | get to see @username
actually being hateful! it was beautiful.) /

Code Switching: Hindi/English

dost tha or ra- hega ... dont wory ... but dherya
rakhe

['he was and will remain a friend ... don't worry ...
but have rfaith’/

Corpus datasheets
Gebru et al (2020), Bender and Friedman (2018)

Motivation:
» Why was the corpus collected?
* By whom?
« Who funded it?

Situation: In what situation was the text written?

Collection process: If it is a subsample how was it
sampled? Was there consent? Pre-processing?

t+Annotation process, language variety, demographics,
etc.

\Words Corpora

and
Tokens

\Words Reqgular Expressions

and
Tokens

Regular expressions are used everywhere

- A formal language for specifying text
strings
- Part of every text processing task

o Often a useful pre-processing or text formatting
step, for example for BPE tokenization

> Also necessary for data analysis of text

> Awidely used tool in industry and
academics

Regular expressions

We use regular expressions to search for a
pattern in a string

For example, the Python function
re.search(pattern,string)

scans through the string and returns the first
match inside it for the pattern

Python syntax

We'll show regex as raw string with double quotes:
r'regex”

Raw strings treat backslashes as literal characters
Many regex patterns use backslashes.

A note about Python regular expressions

> Regex and Python both use backslash "\" for
special characters. You must type extra backslashes!
o "\\d+" to search for 1 or more digits

° "\n" in Python means the "newline" character, not a
"slash" followed by an "n". Need "\ \n" for two characters.

° Instead: use Python's raw string notation for regex:
o r" [tTlhe"

o r""\d+" matches one or more digits
° instead of "\ \d+"

Regular expressions

The pattern

r'Buttercup"”

matches the substring Buttercup in any string, like
the string

I'm called 1ittle Buttercup

Regular Expressions: Disjunctions

Letters inside square brackets |l

r'"[mM]ary" Mary or mary
r'[1234567890]" Any one digit

Ranges using the dash [A-7]

Pattern _[Matches |

r"[A-Z]" Anupper case letter Drenched Blossoms
r"[a-z]" Alowercaseletter my beans were impatient
r"[0-9]" Asingle digit Chapter 1: Down the Rabbit Hole

Regular Expressions: Negation in Disjunction

Carat as first character in [] negates the list
o Note: Carat means negation only when it's first in []

o Special characters (.,

*, +, ?) lose their special meaning inside []

1

1

1

/\A Z] "

[ASs]"
(AL 17

eA]"

Not upper case
Neither ‘S’ nor ‘s’
Not a period

Either e or A

Oyfn pripetchik

I have no exquisite reason”

Our resident Djinn

Look up © now

Kleene star and Kleene plus

baa!
baaa!
baaaa! ..

Kleene star * (0 or more of previous characters) ~ Stephen CKleene

Kleene plus + (1 or more of previous character)

r'‘baaa*"
r''‘baa+"

Wildcard

The period means "any character”

r’. " matches anything

11 NP

r'.*" matches any sequence of 0 or more
of anything

Regular Expressions: Anchors A $

r'"AfA-Z]" Palo Alto
r'\.s$" The end.
r'.$" The end? The end!

Regular Expressions: More Disjunction

Groundhog is another name for woodchuck!

The pipe symbol | for disjunction

r'"'groundhog|woodchuck™ woodchuck
r''yours|mine" yours
r'*alb|c" = [abc]

r'"' [gG] roundhog| [Ww]oodchuck”™ Woodchuck

Regular Expressions: Convenient aliases

r'\d"
r'"\D"
r\w"

r\w"
r'\s"

r'\S"

("

[a—ZA-7Z0-9

[
[

[

0-9]

M\ W]

\r\t\n\f]

*\s]

]

Any digit
Any non-digit
Any alphanumeric or

Not alphanumeric or _

Whitespace (space,
tab)

Not whitespace

Fahreneit 451

Blue Moon

Daiyu

Look!
Lookl lup

Look up

The iterative process of writing regex’s

Find me all instances of the word “the" in a text.

the
Misses capitalized examples

[tT] he
Incorrectly returns other or Theology

\W[tT]he\W

False positives and false negatives

The process we just went through was
based on fixing two kinds of errors:

1. Not matching things that we should have
matched (The)

False negatives

2. Matching strings that we should not have
matched (there, then, other)

False positives

Characterizing work on NLP

In NLP we are always dealing with these kinds of
errors.

Reducing the error rate for an application often

involves two antagonistic efforts:

o Increasing coverage (or recall) (minimizing false
negatives).

o Increasing accuracy (or precision) (minimizing false
positives)

Regular expressions play a surprisingly
large role

Widely used in both academics and
iIndustry

1. Part of most text processing tasks, even
for big neural language model pipelines

o Including text formatting and pre-
processing

2. Very useful for data analysis of any text
data

\Words Reqgular Expressions

and
Tokens

Substitutions, Capture
words Groups, and Lookahead

and
Tokens

Regex Substitutions in Python

To change every instance of cherry to apricot in
string:

re.sub(r''cherry"”, r"apricot’,
string)

Upper case all examples of a hame:
re.sub(r"janet”, r"Janet", string)

Substitutions often need capture
groups

Change US format dates (imm/dd/yyyy) to
EU : (dd-mm-yyyy)

Pattern to match US:
r'\d{2};/\d{2}/\d{4}"

How to specity in the replacement that we
want to swap the date and month values?

Capture group

Use parentheses to capture (sftore the values
that we matched in the search,

Groups have numbers

In repl, we refer back to that group with a
number command.

Capture group

re.sub(r”(\d{2})/(\d{2})/(\d{4})",
r'"\2-\1-\3", string)}

Parens (and) around the two month digits, the
two day digits, and the four year digits,

This stores

o the first 2 digits in group 1,

> the second 2 digits in group 2,
o final digits in group 3.

Then in the repl string,
> \1, \2, and \3, refer to the 1st, 2nd, and 3rd registers.

That regex will

map
The date I1s 10/15/2011
to

The date Is 15-10-2011

But suppose we don't want to capture?

Parentheses have a double function: grouping terms, and
capturing

Non-capturing groups: add a 7. after paren:
r''(?:some|a few) (people|cats) 1like some \1/"

matches
° some cats like some cats

but not

o some cats like some some

L ookahead assertions

(7= pattern) istrue if pattern matches, but
s zero-width:; doesn't advance character
pointer

(?! pattern) true if a pattern does not
match

How to capture the first word on the line, but
only If it doesn't start with the letter T.

r" " (?1LET]) A\w+)\b"

Simple Application: ELIZA

Early NLP system that imitated a Rogerian
psychotherapist
o Joseph Weizenbaum, 1966.

Uses pattern matching to match, e.g...
° T need X”

and translates them into, e.q.
o “What would 1t mean to you 1f you got X?

Simple Application: ELIZA

Men are all alike.
IN WHAT WAY

They're always bugging us about something or

other. CAN YOU THINK OF A SPECIF

C EXAMPLE
nere.

Well, my boyfriend made me come
YOUR BOYFRIEND MADE YOU COM

E HERE

He says I'm depressed much of the time.
| AM SORRY TO HEAR YOU ARE DEPRESSED

How ELIZA works

r.sub(r".* I’M (depressed|sad) .*",r"I AM
SORRY TO HEAR YOU ARE \1",1nput)

r.sub(r”.* I AM (depressed|sad) .*,r"WHY
DO YOU THINK YOU ARE \1",1nput)

r.sub(r”.* all .*",r"IN WHAT WAY?",1nput)

r.sub(r".* always .*",r"CAN YOU THINK OF A
SPECIFIC EXAMPLE?",1nput)

Substitutions, Capture
words Groups, and Lookahead

and
Tokens

